
OTIC FILE COPY

S ystems
O ptimization

Laboratory

C£)
fl

00

A Vectorization Algorithm for the
Solution of Large, Sparse Triangular

Systems of Equations

by
Samuel K. Eldersveld and Martin C. Rinard

TECHNICAL REPORT SOL 90-1

January 1990

DTIC
ELECTEMAR 301990i

SI DI DISTflIBLTION~ STATE12____ U
ApT-7,vn'd fir Public release;D.':riution Unlimited !]

Department of Operations Research
Stanford University
Stanford, CA 94305 90 03 29 134



SYSTEMS OPTIMIZATION LABORATORY
DEPARTMENT OF OPERATIONS RESEARCH

STANFORD UNIVERSITY

STANFORD, CALIFORNIA 94305-4022

A Vectorization Algorithm for the
Solution of Large, Sparse Triangular

Systems of Equations

by
Samuel K. Eldersveld and Martin C. Rinard

TECHNICAL REPORT SOL 90-1

January 1990

Research and reproduction of this report were partially supported by the National Science Founda-
tion grant ECS-8715153, and the Office of Naval Research Grant N00014-90-J-1242.

Any opinions, findings, and conclusions or recommendations expressed in this publication are those
of the authors and do NOT necessarily reflect the views of the above sponsors.

Reproduction in whole or in part is permitted for any purposes of the United States Government.
This document has been approved for public release and sale; its distribution is unlimited.



A VECTORIZATION ALGORITHM FOR THE
SOLUTION OF LARGE, SPARSE TRIANGULAR

SYSTEMS OF EQUATIONS
Accession For

Samuel K. ELDERSVELD§* and Martin C. RINARDt NTIS GRA&I

DTIC TAB
§Systems Optimization Laboratory, Department of Operations Research Unannoinced

Stanford University, Stanford, California 94305-4022, USA Just ification

t Conputer Science Department

Stanford University, Stanford, California 94305-2140, USA By
Distribution/

Technical Report SOL 90-1t Availability Code
January 1990 1Avail and/or

Dist Special

Abstract

A new method is given for use with vector computers on applications that

require multiple solutions with identically patterned triangular factors and dif-
ferent right-hand sides. A key feature is that a vectorization algorithm is used
to place the nonzeros from the factors in a few long vectors. The method is
shown to work well when incorporated into the mathematical programming
system MINOS and tested on 30 linear programming test problems.

1. Introduction

Many application problems require multiple solutions with large, sparse triangular

systems of equations. Often these systems are identical, or share the same nonzero
pattern. The triangular system usually occurs after an arbitrary (not necessarily

square) matrix has been factorized into two triangular matrices: B = LU.

This paper presents a general method for vectorizing any application that re-
quires multiple solves with a sparse L or U. The experimental results demonstrating
the utility of our vectorization method come from the simplex method for linear

programming. In the simplex method, the triangular systems arise from the factor-
ization of a nonsymmetric basis matrix B. During each iteration k of the simplex

method, the basis Bk is used to solve for the search direction p and the dual variables
r in the following linear systems:

Bkp=aq and Br4 =jCk.

"S.K. Eldersveld's research was supported by an IBM Graduate Technical Fellowship.

t'phe material contained in this report is based upon research supported by the National Science

Foundation Grant ECS-8715153 and the Office of Naval Research Grant N00014-90-J-1242.



2 A vectorization algorithm

y,- b
for j= 1 to n do

Y, y- /jj
for all off-diagonal nonzeros lij in column j do

Yi +- Yi - lij X Yj

Figure 1: Lower triangular solve.

An update is then applied in which a single column of Bk is replaced. Using Bartels-
Golub [Bar7l] or Forrest-Tomlin [FT72] updates, the basis at iteration k may be
represented as

Bk = LkUk = (LoMk)Uk, (1.1)

where L0 is the result of a direct factorization of B 0 , Mk is a product of updates,
and Uk is updated explicitly. The factor L0 may be used for 100 or more iterations
before a "fresh" factorization is performed. For a full discussion of the process of
factorization and updating, the reader is referred to [GMSW87]. With either a
product-form update or a block-LU update, both factors L0 and U0 of the initial
basis B0 may be used for many iterations. The block-LU update and its efficiency
for vector computers is discussed in [ES90].

For problems in which the data matrix is very sparse, the factors themselves are
often very sparse. This is particularly the case with large-scale linear programming
where each column of the factors may have very few nonzeros.

The next section presents a naive vectorization method for solves with these
factors, while Section 3 presents an optimal vectorization algorithm for such solves.
Computational results for the optimal vectorization method are given in Section 4.

2. Solutions of systems involving B, L and U

We assume an available factorization B = LU. Under this assumption, a standard
method for solving a set of linear equations Bx = b is to use forward and back
substitution to solve Ly = b and Ux = y. We shall focus on the system Ly = b for
the remainder of the paper.

When the n x n factor L is stored by columns, it is convenient to use the forward
substitution algorithm given in Figure 1. Note that every off-diagonal nonzero of li
generates the operation yi *- y, - li x yj; we call this /j's operation.

When L is dense, both the multiply and subtract in line 5 of the algorithm
can become vector operations. Because the computation associated with a column
Lj depends on the computation associated with column Lj- 1 , each column must
generate a separate vector operation.

Sparse matrices are often stored by column with zero elements eliminated; an
associated index array gives the row index for each nonzero. On machines with
hardware gather/scatter operations, the obvious way to vectorize a solve with L is
again to make each column's computation a separate vector operation. To perform



3. The Vectorization Algorithm 3

the computation associated with column Lj, the algorithm would broadcast the
element yj into adjacent locations of a work vector (one per subdiagonal nonzero
lij), perform the vector multiply on this work vector, gather the elements Yi from
which the products must be subtracted into adjacent locations of another work
vector, subtract the two work vectors, and scatter the elements yi back into the
appropriate locations in y.

The problem with this vectorization is that for many sparse matrices, the re-
sulting vectors are so short that very little speedup is observed. It is often possible
to increase the average vector length by taking advantage of the sparsity pattern of
the matrix to schedule operations from different columns of L into the same vector
operation.

3. The Vectorization Algorithm

For the purposes of exposition, we will assume that L is unit-diagonal. This con-
straint will be removed later. Given L, our vectorization algorithm must generate
a sequence of vectors. Each vector is a sequence of scalar operations of the form
Yi - Yi - lij x yj; we will call such a sequence of vectors a vector schedule. A vector
schedule solves Ly = b if and only if it satisfies the following constraints:

1. Every scalar operation in the vector schedule is the operation of some off-
diagonal nonzero of L.

2. Every off-diagonal nonzero's operation appears exactly once in the vector

schedule.

3. Every vector contains at most one operation from row i of L (i = 1,... ,n).

4. All vectors containing an operation from row i appear before any vector con-
taining operations from column i.

These constraints suggest the algorithm given in Figure 2. This algorithm maintains
n queues of nonzeros, one for each row of L. Qi contains all nonzeros from row i of
L that are ready to be scheduled. The algorithm does not enquene a nonzero li into
queue Qi(i > j), until it has scheduled all operations from row j, so the generated
schedule satisfies constraint 4.

The algorithm schedules each vector by scheduling one operation from each
nonempty queue. Because each nonzero lij appears only in queue Qi, the generated
schedule satisfies constraint 3.

If there are no off-diagonal nonzeros in row i, the algorithm enqueues the off-
diagonal honzero lij before scheduling any vectr rs. Because the algorithm runs until
all queues are empty, lij will eventually be dequeued and its operation scheduled.
Because there are no off-diagonal nonzeros in row j, the algorithm will not enqueue
lij again.

If there are off-diagonal nonzeros in row j, the algorithm enqueues nonzeros li in
column j only when the last nonzero from row j is dequeued. If each nonzero in row
j is dequeued exactly once, thi the last nonzero in row j will be dequeued exactly



A vectorization algorithm

for i = 1 to n do
Qi -- empty quene

for each row j with no off-diagonal nonzeros do
for all off-diagonal nonzeros lij in column j do

enqueue lij in queue Qi

while some queue is nonempty do
SCHED- k
for each nonempty Qj do

dequeue a nonzero lij from queue Qj
SCHED,-SCHEDU{4I}
schedule lii's operation in vector v

for all nonzeros lik E SCHED do
if all operations in row j have been scheduled then

for all off-diagonal nonzeros lii in column j do
enqueue lij in queue Qi

Figure 2: Vectorization algorithm

once, and so each lij will be enqueued exactly once. Because the algorithm runs
until all queues are empty, each lij will eventually be dequeued and its operation
scheduled.

These observations make it easy to prove by induction on the number of off-
diagonal nonzeros that each nonzero's operation is scheduled exactly once, so the
generated schedule satisfies constraint 2. Finally, the algorithm enqueues only off-
diagonal nonzeros from the matrix L, so the generated schedule satisfies constraint
1.

3.1. Optimality of the vectorization algorithm

Because the running time for a given computation goes down as the average vector
length goes up, the optimal vector schedule for solving Ly = b is the schedule with
the fewest vectors. The next results establish the optimality of the vectorization
algorithm.

Definition 1. An off-diagonal nonzero lij is enabled at v in a vector schedule if the
number of operations from row j in vectors I through v - 1 equals the number of
off-diagonal nonzeros in row j.

Note that if a nonzero lij is not enabled at v in a given vector schedule, scheduling
lij's operation in vector v violates constraint 4.



3. The Vectorization Algorithm 5

Lemma 1. lij is enabled at v in the vector schedule G generated by the algorithm
if and only if the algorithm enqueued lij before scheduling vector v.

Proof. If there are no off-diagonal nonzeros in row j, then the algorithm enqueued
lij before scheduling vector 1. If there are off-diagonal nonzeros in row j and lij
is enabled at v in G, then vectors 1 through v - 1 contain all operations from row
j. Find the v' < v such that vector v' contains the last operation from row i. The
algorithm enqueued li after scheduling this last operation in vector v'.

If the algorithm enqueued lij before scheduling vector 1, then there are no off-
diagonal nonzeros in row j and lij is enabled in G for all v. Otherwise, the algorithm
enqueued lij because it scheduled the last nonzero in row j in some vector v', with
v/ < v. Therefore, the number of operations from row j in vectors 1 through v'
equals the number of nonzeros in row j, and lii is enabled at v in G. I

Theorem 1. Any vector schedule that solves Ly = b, where L has unit-diagonals,
contains at least as many vectors as the schedule generated by the algorithm.

Proof. Assume there exists a vector schedule S that is shorter than the schedule
G generated by the algorithm. Then for some v and row j, S has more operations
from row j in vectors 1 through v than G. Find the smallest such v. Then G
has no operation from row j in vector v, while S does. Therefore, Qj was empty
when the algorithm scheduled vector v. Let t equal the number of operations from
row j in vectors 1 through v - 1 in schedule G. Because Qi was empty when
the algorithm scheduled vector v, t nonzeros had been enqueued on Qi when the
algorithm scheduled vector v. By our lemma, there are t nonzeros from row j in the
set of enabled nonzeros at v in G.

Because for all rows i, G has at least at many operations from row i in vectors 1
through v - 1 as S has, the set of enabled nonzeros at v in G is a superset of the set
of enabled nonzeros at v in S. But, because S has an operation from row j in vector
v, the number of enabled nonzeros at v in S from row j is at least t + 1, which is a
contradiction. I

This vectorization algorithm runs in time proportional to n plus the number of
off-diagonal nonzeros of L. The queue initialization phase runs in time proportional
to n. It is possible to perform the traversal of nonempty queues in time proportional
to the number of nonempty queues by maintaining a linked list of nonempty queues.
It is also possible to enqueue and dequeue nonzeros in constant time by keeping a
pointer to the first and last nonzero in each queue.

Given this information, it is easy to see that the scheduling phase of the algorithm
runs in time proportional to the number of enqueue operations plus the number
of dequeue operations. Because each off-diagonal nonzero is enqueued once and
dequeued once, the scheduling phase of the algorithm takes time proportional to
the number of off-diagonal nonzeros.

3.2. Removing the Unit Diagonal Assumption

To correctly schedule a matrix with non-unit diagonal elements, the vector schedule
must divide each element yi by Iii after all operations of the form yi -- yi - lij x yj.



6 A vectorization algorithm

Once the division, yi -- yi/lii has been carried out, the algorithm may schedule all
operations of the form yj - yj - lji x yi. The algorithm can augment the vector
schedule by inserting the divide operation Yi -- yi/lii just before the first vector
containing an operation of the form yj +- yj - lji x yi. Using this modification, the
augmented vector schedule may no longer be optimal.

To maintain optimality of the solve, any lower triangular matrix L with non-
unit diagonals may be scaled so as to have unit diagonals. This is accomplished
by dividing each column j of L by ljj, yielding a new system tD = L, where the
diagonal matrix D = diag(111,122,..-, lnn). The work to solve LDy = b now includes
a vectorizable division with D and an optimal solve with L.

In practice, most algorithms yield a factorization B = LU with L having unit
diagonals and U non-unit diagonals. In this case U may scaled so as to have unit
diagonals by dividing each row i of U by 1/uii. The resulting system, B = LDU,
now includes a diagonal matrix D = diag(uI,u 22 ,. , un,). Using this form of the
factorization, the work to solve By = b now includes a solve with L, a vectorizable
division with the matrix D (yi +- yi/uii, i = 1,2,... ,n), and an optimal solve with
the newly scaled U.

4. Computational Results

In this section we compare numerical results for two methods of solving lower trian-
gular systems. Method M I is the naive method presented in Section 2 and vectorizes
the computation associated with each column of the triangular system. Method M2
is an implementation of the vectorization algorithm presented in Section 3. Both
methods were incorporated into MINOS/SC 5.3 [Eld89], a modification of the mathe-
matical programming system MINOS 5.3 [MS87]. MINOS/SC includes an alternative
basis updating scheme as well as special pricing routines designed especially for
vector computers. The computational tests demonstrate the efficiency of the new
method and show that M2 is more efficient than method MI on a representative set
of large, sparse problems.

The computational results presented in this section come from timing various
portions of MINOS/SC using methods Ml and M2 during the solution of 30 linear
programming test problems. Many of these problems are available from the netlib
collection [Gay85]. The test problem specifications are given in Table 1 in the
appendix. The very smallest netlib test problems were omitted from the results as
the total time required by solutions with the Lo factors for these problems was less
than 1/100th of a second on the Cray Y-MP.

4.1. Results

The computational tests were performed on an 8 processor Cray Y-MP supercom-
puter. The operating system was UNICOS, version 5.1, and the MINOS code was
compiled using the CFT77 compiler with full optimization. Each run was made as
a batch job.

For each test run the number of iterations and total solution time is recorded in
Table 3 in the appendix. The solution time was measured by timing the MINOS sub-



4. Computational Results 7

routine MSSOLV. The options used for MINOS were the standard MINOS/SC vectoriz-
ing options, i.e. PARTIAL PRICE 10, SCALE OPTION 2, SCHUR-COMPLEMENT AUTO.
The set of problems was then run with and without the VECTORIZE SOLVE op-
tion. Note that by "turning off" the VECTORIZE SOLVE option, we do not inhibit
the "naive" vectorization of solves with the regular columns of L0 . In this case,
only the new vectorization algorithm is inhibited. Since the default FACTORIZATION
FREQUENCY for MINOS 5.3 is 100, the vectorization algorithm was rerun for the new
basis approximately every 100 iterations. This means that each time a new Lo
was reordered using the vectorization algorithm, it was used to solve 100 or fewer
systems of equations.

For purposes of evaluating the scheduling algorithm, the following items were
deemed to be of interest for each method:

1. Total and average time spent solving with L0 .

2. Total time spent scheduling for the vectorization algorithm (for VECTORIZE
SOLVE option only).

3. Percent increase in vector length.

4. Average vector length in Lo factor.

Time spent in solving with L0 was measured by timing the appropriate portion of
the MINOS subroutine LU6SOL and its counterpart for the solve generated by the
vectorization algorithm. The total and average solve time with Lo factors, total
scheduling time and average vector length, are recorded in Table 2.

The results from Table 2 dramatize how short the average column lengths are
for the standard method. The vector lengths for method MI are given in the column
labeled PLo. Vector lengths this short will perform poorly on a vector machine. In
fact, MINOS/SC has compiler directives to disable vectorization when dealing with
vectors shorter than 5. (Without this compiler directive, results for method M1
on the test set were much worse than those given in Table 2.) Under method M2,
using the vectorization algorithm, we are able to increase the vector lengths without
performing more operations during the solves. Vector lengths for method M2 are
given in the column labled jiv. The average increase in vector length can be seen
in the last row of 'fable 2.

The average solve time is indicated by columns labeled SL for method MI and Sv
for method M2. Method M2 gives more efficient solve times for each problem. The
speed-up factor for solves with method M2 over that of M1 is given in the column
headed SLISV. The aggregate speed-up in solve times for the test set was 3.39.

To determine the success of method M2, the total solve time for method MI
must be compared with the combined solve time and ordering time under method
M2. For example, the problem greenbea exhibits a 26-fold increase in vector length
using the vectorization method. The resulting total speedup for solves with L0 is
about 2.3 (i.e. 22.92 seconds for MI vs (3.79 + 6.06) = 9.85 seconds for M2). The
results of Table 2 show that the total scheduling time for the new algorithm was
usually small in comparison with the total solve time with Lo. For many of the



8 A vectorization algorithm

problems, especially the larger and most difficult ones, the time reduction for the
total scheduling time plus the total time for solving with Lo under method M2 is
only a fraction of the total solve time with L0 under method Mi. Allowing more
iterations between refactorizations may allow the method to be more competitive,
as the scheduling time for method M2 can be amortized over more solves with the
factor. For the problems tested, with the exception of pilots, the number of solves
required to "break even" with the vectorization algorithm ranged from 5.74 to 76.87
with a mean of 21.02.

It is important to note that for every problem tested except pilots, the total
scheduling time plus the solve time with LO for method M2 was at least as small as
the total solve time for the problem run without the vectorization algorithm (M1).
This indicates that even for small problems, using the vectorization method does not
increase computation time, and for most large problems (the problems of interest
for supercomputers) a large reduction in computation time is expected.

The performance on the problem pilots is of interest. We note that the overall
vector length increase for the scheduling algorithm is not small in relation to many
of the other large problems, but as method M1 does create relatively long vectors
initially for pilots, 11.48 vs an average of 2 94 for the test set, increasing the average
length using method M2 gives little improvement.

As one might expect, the speedup in solves with L0 under the new method is
also related to the percent increase in vector length using method M2. The percent
increase in vector length is given in Table 3. The average increase was 895%.

4.2. Further work

The vectorization of the solve has only been implemented here for the lower trian-
gular factor L0 . The computational results for the solves with L0 have shown that
the new scheduling method is efficient for multiple solves with similarly patterned
systems. To completely vectorize the solves in the simplex method, the scheduling
algorithm should be applied to L0 , Log, UO, and U0T (assuming Uo is not destroyed
by the update), each time the current basis is refactorized. This should load to even
more favorable overall timing results. Similarly, in the symmetric case, the vector-
ization algorithm should be run for L0 and LT. This doubles the storage requirement
over that in traditional solve methods, but allowing the factor to be stored in two
ways makes the forward and back substitution algorithms run more efficiently and
can decrease solve times. This is due to the fact that transposed solves using a factor
stored by rows (columns) require searching for the column (row) indices needed at
each stage in the new vectorized solve. The authors feel that in this day of inex-
pensive memory, the benefits will be seen on all but the largest of problems where
doubling the storage requirement may not be feasible.

The vectorization algorithm should work well for other applications, such as
interior-point methods for linear programming. In many of these implementations, a
Cholesky factorization LkLT = ADkATis carried out using the structure of a matrix
AAT. The factors are either used directly or as a preconditioner for a conjugate-
gradient method to solve a least-squares problem. Although the iteration counts



References 9

are usually much lower for interior-point methods than for simplex methods, the
structure of each system stays constant throughout the algorithm. This means that
when the Cholesky factors are used to solve the least-squares problems directly, the
scheduling algorithm need be carried out only once for L0 and once for Lo, and can
be used to vectorize the solve for each iteration. In this case the overhead of the
scheduling algorithm can be amortized over many solves. When the Cholesky factor
is used as a preconditioner, the vectorization algorithm is even more efficient since
the factors are used to solve multiple systems each iteration.

4.3. Conclusions

When solvir iltiple large, sparse systems of linear equations it is possible to take
advantage of tLe nonzero structure of the triangular factors to increase vector length
and decrease computation time when running on a vector computer.

The vectorization algorithm runs in time proportional to the number of nonzero
elements and the order of the system. For symmetric systems, and methods that
require solves with transposed factors, the scheduling algorithm must be run once
for each transposed and untransposed factor.

The gain in efficiency lies in being able to amortize the scheduling cost over
multiple solves with the same or identically structured factor.

The vectorization algorithm was incorporated into the mathematical program-
ming system MINOS. Tests on a representative set of large, sparse linear program-
ming test problems showed that on average the length of the vectors arising in the
triangular solves increased from 3 to 24, giving ani average speedup of 3.4.

Acknowledgements

The authors are indebted to Michael Saunders for helpful suggestions and to Bill
Kamp and John Gregory of Cray Research, Inc. for supporting the research by
providing computer time for the computational tests.

References

[Bar7l] Bartels, R.H. (1971). A stabilization of the simplex method. Numerische Mathen.atik
16, 414-434.

[Eld89] Eldersveld, S.K. (1989). MINOS/SC User's Guide Supplement, Internal technical re-
port, Department of Industry, Science and Technology, Cray Research, Inc., Mendota
Heights, Minnesota.

[ES90] Eldersveld, S.K. and Saunders, M.A. (1990). A block-LU update for large-scale linear
programming. SOL technical report (to appear), Department of Operations Research,

Stanford University, Stanford, California.

[FTT21 Forrest, I.J.H. and Tomlin J.A. (1972). Updating triangular factors of the basis to
maintain sparsity in the product form simplex method. Mathematical Programming 2,
263-278.

[Gay85] Gay, D.M. (1985). Electronic mail distribution of linear programming test problems,
Mathematical Programming Society COAL Newsletter, 13, 10-12.

[GMSW87] Gill, P.E., Murray, W., Saunders, M.A., and Wright, M.H. (1987). Maintaining LU
factors of a general sparse matrix, Linear Algebra and its Applications, 88/89 239-270.



10 References

[MS87] Murtagh, B.A. and Saunders, M.A. (1983). MiNOS 5.1 User's Guide, Report SOL 83-
20R, Department of Operations Research, Stanford University, Stanford, California.



A. Tables 1

A. Tables

No. Problem [Rowsj Cols [Elems Objective value-

1 80bau3b 2263 2266 29063 9.8722822814E+05
2 bp822 822 825 11127 5.5018458595E+03
3 cycle 1904 1907 21322 -5.2263930249E+00
4 czprob 930 933 14173 2.1851966988E+06
5 etamacro 401 404 2489 -7.5571519542E+02
6 M8f100 525 528 6235 5.5567961167E+05
7 ganges 1310 1313 7021 -1.0958627396E+05
8 greenbea 2393 2396 31499 -7.2462397960E+07
9 grow22 441 444 8318 -1.6083433648E+08

10 nesm 663 666 13988 1.4076079892E+07
11 perold 626 629 6026 -9.3807558690E+03
12 pilot.ja 941 944 14706 -6.1131579663E±03
13 pilot.wve 723 726 9218 -2.7201045880E+06
14 pilot4 411 414 5145 -2.5811392641E+03
15 pilotnov 976 979 13129 -4.4972761882E+03
16 pilots 1442 3652 43220 -5.5760732709E+02
17 scfxm2 661 664 5229 3.6660261565E+04
18 scfxm3 991 994 7846 5.4901254550E+04
19 scrs8 491 494 4029 9.0429998619E+02
20 scsd6 148 151 5666 5.0500000078E+01
21 scsd8 398 401 11334 9.0499999993E+02
22 sctap3 1491 1494 17554 1.4240000000E+03
23 shiipO8l 779 782 17085 1.9090552114E+06
24 shipl2l 1152 1155 21597 1.4701879193E+06
25 sliipl2s 1152 1155 10941 1.4892361344E±06
26 stair 357 360 3857 -2.5126695119E+02
27 stocfor2 2158 2161 9492 -3.9024408538E+04
28 tdesg1 3500 4050 18041 4.3560773922E+04
29 tdesgs 4215 22613 105002 4.3407357993E+04
30 woodw 11099 11102 137478 11.3044763331E+00

Table 1: Problem specifications.



12 References

Aethod Ml: SL PLO M2: Sv PVL SLISV

Total Mean Mean Total Total Mean Mean Lsolve
Problem lsolve lsolve vector schd lsolve Isolve vector speed-

name time time length time time time length up
(sec) (Psec) (see) (see) (Psec)

80bau3b 6.21 5500.55 1.58 0.59 0.96 869.93 39.74 6.38
bp822 2.31 4228.79 3.51 0.37 0.87 1580.87 26.46 2.67
cycle 1.63 5673.91 3.16 0.25 0.45 1499.64 51.18 3.78
czprob 0.33 2407.53 1.00 0.02 0.08 603.62 6.66 3.99
etamacro 0.07 1150.58 1.45 0.01 0.02 282.38 13.83 4.07
fffffSO0 0.05 762.92 3.96 0.01 0.03 487.24 11.79 1.57
ganges 0.10 1443.91 1.66 0.01 0.03 371.01 16.04 3.89
greenbea 22.92 13870.9 3.46 3.79 6.06 3513.42 90.24 3.95
grow22 0.30 3234.55 5.45 0.07 0.21 1985.22 21.29 1.63
nesm 0.23 1012.18 1.46 0.03 0.08 311.88 12.15 3.25
perold 1.14 3847.43 4.16 0.23 0.50 1669.09 25.58 2.30
pilot.ja 2.44 4728.59 4.55 0.48 1.07 2106.41 30.52 2.25
pilot.we 1.59 4566.55 2.92 0.20 0.40 1200.97 36.73 3.81
pilot4 0.26 2223.11 5.47 0.06 0.19 1662.52 16.80 1.34
pilotnov 0.84 4225.29 3.93 0.15 0.36 1809.30 25.31 2.34
pilots 11.70 8687.68 11.48 4.87 11.73 8484.91 47.09 1.02
scfxm2 0.11 1584.88 2.13 0.01 0.03 455.72 19.72 3.48
scfxm3 0.29 2546.77 2.22 0.04 0.07 613.37 30.11 4.15
scrs8 0.07 1291.28 1.48 0.01 0.02 326.17 13.84 3.96
scsd6 0.09 961.20 1.88 0.01 0.03 312.56 13.34 3.08
scsd8 0.69 2644.14 1.87 0.06 0.16 576.46 23.76 4.59
sctap3 0.05 543.33 1.53 0.01 0.02 186.59 10.39 2.91
ship081 0.10 1756.20 1.06 0.01 0.03 444.42 7.73 3.95
shipl2l 0.19 1858.74 1.02 0.01 0.03 311.47 13.44 5.97
shipl2s 0.05 971.57 1.01 0.01 <0.01 147.06 23.29 6.61
stair 0.08 1644.06 5.72 0.02 0.06 1197.79 17.64 1.37
stocfor2 0.44 2215.02 1.54 0.05 0.08 419.07 29.00 5.29
tdcsgl 2.82 7377.14 2.11 0.31 1.14 2974.36 11.00 2.48
tdesg5 30.48 13914.05 2.19 3.33 10.39 4474.36 15.15 3.11
woodw 0.90 3380.22 3.14 0.12 0.35 1295.92 20.59 2.61
MEAN 2.95 3675.10 2.94 0.50 1.18 1405.79 24.01 3.39

Table 2: Problem Results.



A. Tables 13

Method All: M2:
Problem Itns Soln Time Itns Soln Time

name time Per itn time Per itn incr in
(secs) (millisecs) (secs) (millisecs) vect len

80bau3b 11750 155.24 13.21 11571 150.96 13.05 2310.9
bp822 6346 51.89 8.18 6346 51.01 8.04 668.6
cycle 3302 40.82 12.36 3359 40.61 12.09 1517.7
czprob 1434 8.38 5.84 1434 8.17 5.70 566.4
etamacro 726 2.70 3.72 719 2.64 3.67 876.7
fffff800 754 3.61 4.79 772 3.71 4.81 189.2
ganges 711 4.94 6.95 711 4.84 6.81 742.0
greenbea 19194 351.14 18.29 20070 353.7 17.62 2527.6
grow22 1072 7.01 6.54 1201 7.86 6.54 342.7
nesm 2549 13.08 5.13 2851 14.74 5.17 714.8
perold 3655 24.10 6.59 3655 23.72 6.49 546.8
pilot.ja 6265 54.30 8.67 6182 52.91 8.56 588.5
pilot.we 4202 30.60 7.28 3962 27.87 7.03 1182.4
pilot4 1352 6.18 4.57 1354 6.21 4.59 233.5
pilotnov 2340 21.88 9.35 2340 21.58 9.22 604.7
pilots 15549 326.56 21.00 15966 341.03 21.36 329.3
scfxm2 755 3.92 5.19 835 4.17 4.99 798.4
scfxm3 1281 9.25 7.22 1281 9.07 7.08 1242.6
scrs8 669 2.60 3.89 669 2.55 3.81 858.8
scsd6 1040 3.07 2.95 1228 3.46 2.82 663.3
scsd8 2706 15.20 5.62 2864 15.54 5.43 1276.9
sctap3 1008 7.51 7.45 1008 7.49 7.43 537.8
ship081 591 3.11 5.26 591 3.04 5.14 639.3
shipl2l 1012 6.95 6.87 1012 6.81 6.73 1217.5
shipl2s 538 3.31 6.15 538 3.26 6.06 2205.9
stair 609 2.68 4.40 609 2.69 4.42 231.2
stocfor2 2196 27.03 12.31 2111 25.48 12.07 1812.4
tdesgl 4099 73.55 17.94 4099 72.77 17.75 401.6
tdesg5 22935 619.03 26.99 24350 643.04 26.41 584.8
woodw 2747 27.99 10.19 2831 28.21 9.96 476.4
MEAN 4113 63.59 8.83 4217 63.09 8.69 895.7

Table 3: Overall Problem Results.



UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (WO 000. #OrO.

REPORT DOCUMENTATION PAGE READ________________

1. ~ ~ ~ ~ 2 RPR UenGovT ACCESSION WO6 L. RECIPIT'S CATALOG NMB~ER

4. TTLE(and 00)S. TYPE OF REPORT 6 PERIOD COVCmED

A Vectorization Algorithm for the Solution of Technical Report
Large, Sparse Triangular Systems of Equations

a. PERFORMING OitG. REPORT NUMBER

7. AUTI4OR(e) S. CONTRACT OR GRANT NUM8ER(s)

Samuel K. Eldersveld and Martin C. Rinard N00014-90-J-1242

9. PERFORMING ORGANIZATION NAME AND ADDRESS IS. PROGRAM ELIEMEN11T. PROJECT. TASK
AREA 6 WORK UNIT NUMBERS

Department of Operations Research - SQL
Stanford University 1111 MA
Stanford, CA 94305-4022 ______________

11I. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

January 1990
Is. pMBer. OF PAGES

If. SECURITY CLASS. (of16 I. Pee)

UNCLASSIFVIED

IS..II FCAtiCATION DOWN 0RACING

If. DISTRIBUTION STATEMENT (of MSte Report)

This document has been approved for public release and sale;
its distribution is unlimited.

17. DISTRIBUTION STATEMENT (of Me aosi enteed In 3*..& ". it 400mat IMS *@.et

1S. SUPPLEMENTARY NOTES

is. KEy WORDS (COMi~u. te. of& "460O rn..om'nA5a &Fv B, Mumbe

-triangular systems; linear progranmiing; vector computers

20. ABSTRACT (CaMU. m mvwr sie Ia.m mu~b th.ib

Please see other side...

DO I j IAM J 143 DI TIONO 00 NOV 05 IS 00BSO1667

SECURITY CLAWFIICATION OF THIS9 PAGE(bd "41 M;14Em



SaCURITY CLASSIFICATION OF THIS PAGZ('Ithus Date nmt sod)

Technical Report SOL 90-1"
January 1990

Abstract

A new method is given for use with vector computers on applications that

require multiple solutions with identically patterned triangular factors and dif-

ferent right-hand sides. A key feature is that a vectorization algorithm is used
to place the nonzeros from the factors in a few long vectors. The method is

shown to work well when incorporated into the mathematical programming
system MINOS and tested on 30 linear programming test problems. V. , ,

IECURITY CLASU1ICAT@ OF 'WO PAOC(lho ,e Mim


